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sity of SRAM as compared to DRAM. An SRAM-based main memory requires more devices, more
circuit board area, and more connecting wires—all requirements that add cost and reduce the reli-
ability of a system. Some supercomputers have been built with main memory composed entirely of
SRAM, but keep in mind that these products have minimal cost constraints, if any.

If software running on microprocessors tended to access every main memory location with equal
probability, not much could be done to improve memory bandwidth without substantial increases in
size and cost. Under such circumstances, a choice would have to be made between a large quantity
of slow memory or a small quantity of fast memory. Fortunately, software tends to access fairly con-
strained sets of instructions and data in a given period of time, thereby increasing the probability of
accessing sequential memory locations and decreasing the probability of truly random accesses.
This property is generally referred to as locality. Instructions tend to be executed sequentially in the
order in which they are stored in memory. When branches occur, the majority are with small dis-
placements for purposes of forming loops and local “if...then...else” logical decisions. Data also
tend to be grouped into sequential elements. For example, if a string of characters forming a person’s
name in a database is being processed, the characters in the string will be located in sequential mem-
ory locations. Furthermore, the entire database entry for the person will likely be stored as a unit in
nearby memory locations.

Caches largely overcome main memory latency problems. A cache, pronounced “cash,” is a small
quantity of fast memory that is used to temporarily store portions of main memory that the micro-
processor accesses often or is predicted to access in the near future. Being that cache memory is rel-
atively small, SRAM becomes practical to use in light of its substantial benefits of fast access time
and simplicity—a memory controller is not needed to perform refresh or address multiplexing oper-
ations. As shown in Fig. 7.1, a cache sits between a microprocessor and main memory and is com-
posed of two basic elements: cache memory and a cache controller.

The cache controller watches all memory transactions initiated by the microprocessor and selects
whether read data is fetched from the cache or directly from main memory and whether writes go
into the cache or into main memory. Transactions to main memory will be slower than those to the
cache, so the cache controller seeks to minimize the number of transactions that are handled directly
by main memory.

Locality enables a cache controller to increase the probability of a cache hit—that data requested
by the microprocessor has already been loaded into the cache. A 100 percent hit rate is impossible,
because the controller cannot predict the future with certainty, resulting in a cache miss every so of-
ten. Temporal and spatial locality properties of instructions and data help the controller improve its
hit rate. Temporal locality says that, if a memory location is accessed once, it is likely to be accessed
again in the near future. This can be readily observed by considering a software loop: instructions in
the body of the loop are very likely to be fetched again in the near future during the next loop itera-
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FIGURE 7.1 Computer with cache.
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tion. Spatial locality says that, if a memory location is accessed, it is likely that nearby locations will
be accessed in the near future. When a microprocessor fetches an instruction, there is a high proba-
bility that it will soon fetch the instructions immediately following that instruction. Practically
speaking, temporal locality tells the cache controller to attempt to retain recently accessed memory
locations in the expectation that they will be accessed again. Spatial locality tells the cache control-
ler to preload additional sequential memory locations when a single location is fetched by the micro-
processor, in the expectation that these locations will be soon accessed.

Given the locality properties, especially spatial locality, that need to be incorporated into the
cache controller, a basic cache organization emerges in which blocks of data rather than individual
bytes are managed by the controller and held in cache memory. These blocks are commonly called
lines, and they vary in size, depending on the specific implementation. Typical cache line sizes are
16, 32, or 64 bytes. When the microprocessor reads a memory location that is not already located
in the cache (a miss), the cache controller fetches an entire line from main memory and stores it as
a unit. To maintain the simplicity of power-of-two logic, cache lines are typically mapped into
main memory on boundaries defined by the line size. A 16-byte cache line will always hold mem-
ory locations at offsets represented by the four least-significant address bits. Main memory is
therefore effectively divided into many small 16-byte lines with offsets from 0x0 to OxF. If a micro-
processor with a 32-bit address bus fetches location 0x1000800C and there is a cache miss, the
controller will load locations 0x10008000 through 0x1000800F into a designated cache line. If the
cache is full, and a miss occurs, the controller must flush a line that has a lower probability of use
so as to make room for the new data. If the flushed line has been modified by writes that were not
already reflected in main memory, the controller must store the line to prevent losing and corrupt-
ing the memory contents.

As more cache lines are implemented, more sections of main memory can be simultaneously held
in the cache, increasing the hit rate. However, a cache’s overall size must be bounded by a system’s
target size and cost constraints. The size of a cache line is a compromise between granularity, load/
store time, and locality benefits. For a fixed overall size, larger lines reduce the granularity of unique
blocks of main memory that can be simultaneously held in the cache. Larger cache lines increase the
time required to load a new line and update main memory when flushing an old line. Larger cache
lines also increase the probability that a subsequent access will result in a hit.

Cache behavior on reads is fairly consistent across different implementations. Writes, however,
can be handled in one of three basic manners: no-write, write-through, and write-back. A no-write
cache does not support the modification of its contents. When a write is performed to a block of
memory held in a cache line, that line is flushed, and the write is performed directly into main mem-
ory. This scheme imposes two penalties on the system: writes are always slowed by the longer la-
tency of main memory, and locality benefits are lost because the flush forces any subsequent
accesses to that line to result in a miss and reload of the entire line that was already present in the
cache.

Write-through caches support the modification of their contents but do not support incoherency
between cache memory and main memory. Therefore, a write to a block of memory held in a cache
line results in a parallel write to both the cache and main memory. This is an improvement over a no-
write cache in that the cache line is not forcibly flushed, but the write is still slowed by a direct ac-
cess to main memory.

A write-back cache minimizes both penalties by enabling writes to valid cache lines but not im-
mediately causing a write to main memory. The microprocessor does not have to incur the latency
penalty of main memory, because the write completes as fast as the cache can accept the new data.
This scheme introduces complexity in the form of incoherency between cache and main memory:
each memory structure has a different version of the same memory location. To solve the incoher-
ency problem, a write-back cache must maintain a status bit for each line that indicates whether the





